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• ESSENCE: An Electronic 
Surveillance System for 
the Early Notification of 
Community-based Epidemics

• Monitoring health care data
– ~800 military treatment facilities 

since Sept. 2001
– 12 major metropolitan civilian areas

• Evaluating data sources
– Civilian physician visits 
– OTC pharmacy sales
– Prescription sales
– Nurse hotline/EMS data
– Absentee rate data

• Developing & implementing alerting 
algorithms

ESSENCE Biosurveillance Systems
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Statistical Tools

• Aberration detection algorithms
– Data modeling: multivariate regression

• Covariates: Holiday, post-holiday, trend, provider 
count,…

– Statistical process control
EWMA, CUSUM charts

• Combining data sources
– Multiple univariate: combine p-values
– Multivariate: Hotelling’s T2 variants: MEWMA, …
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Elements of Data Fusion Problem

• Evidence disparate in scale, variability, specificity, 
timeliness 
– syndromic:  ED data specific, possibly late; OTC data 

nonspecific, potentially timely
– sensor: sparse spatial coverage; data gaps

• Informatics issues
– Differential lags in signal effect, reporting
– Data dropouts

• Differential background characterization
• Differential signal characterization
• Differential information value (relevance)
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Bayes Belief Net (BBN) Umbrella

• Graphical representation of conditional dependencies
• Inclusion of disparate evidence types

– Continuous/discrete data or derived probabilities
– Expert/heuristic knowledge

• Can weight statistical hypothesis test evidence using 
heuristics – not restricted to fixed p-value thresholds

• Can exploit advances in data modeling, multivariate 
anomaly detection

• Modularity in data fusion approach
• Management of missing data
• Can model 

– Personal weighting of evidence
– Lags in data availability or reporting
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Model Building –
Clinical Models Exist

Inhalational anthrax … a biphasic clinical illness …
1-to 4-day initial phase of malaise, fatigue, fever, myalgias, and 
nonproductive cough, followed by a fulminant [sudden and severe] 
phase of respiratory distress, cyanosis, and diaphoresis [sweating]. 
Death follows the onset of the fulminant phase in 1 to 2 days. 

Data from the Sverdlovsk outbreak indicate a modal incubation time of 
approximately 10 days for inhalational anthrax. However, the onset of 
symptoms occurred up to six weeks after the reported date of exposure. 
Such long incubation times presumably reflect the ability of viable anthrax 
spores to remain in the lungs for many days. Longer incubation periods may 
be associated with smaller inocula. 

John A. Jernigan, et al., “Bioterrorism-Related Inhalational Anthrax: The First 10 Cases 
Reported in the United States,” Emerging Infectious Diseases, Vol. 7, No. 6, November-
December 2001

Terry C. Dixon, B.S., et al., “Anthrax,” NEJM , Volume 341:815-826, Number 11, September 9, 1999
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Flu Anthrax

Flu Season GI Anomaly Resp Anomaly Sensor Alarm

P(Flu Outbreak Occurring) = 0.05 P(Anthrax Outbreak Occurring) = 0.001
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Example Bayes Network (1)

Prior Probabilities

Effective Sensor PD and PFAP(Flu Season | Flu Outbreak Occurring) = 0.90
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Notional Bayes Network for
Event Classification

Sensor/Environment Interactions
Fusion of anomalies

in syndromic data

Non-numeric data

Temporal
dependencies
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Application to Asthma Flare-ups

• Availability of practical, verifiable data:
– For “truth data”: daily clinical diagnosis counts
– For “evidence”:  daily environmental, syndromic data

• Known asthma triggers with complex interaction
– Air quality (EPA data)

• Concentration of particulate matter, allergens
• Ozone levels

– Temperature (NOAA data)
– Viral infections (Syndromic data)

• Evidence from combination of expert knowledge, 
historical data
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Asthma Triggers: Expert Evidence

• Ozone:
– Burnett et al, 1994; 
– Sartor et al, 1995; 
– Stern et al, 1994; 
– Stieb et al, 1996; 
– Zhang et al, 2004 and others.

• Particulate Matter (PM):
– Anderson et al, 2001; 
– Chuersuwan et al 2000; 
– Leaderer et al, 2003;
– Howel et al, 2001; 
– Norris et al, 1999; 
– Ward and Ayres, 2004 and others.

• Allergens:
– Solomon 2002; 
– Taylor et al 2002; 
– Ziska et al, 2003 and others, 

• Viral Infections:
– Hegele, 1999; 
– Cohen and Castro, 2003; 
– Lemanske, 2003 and others;

• Cold Weather:
– Anderson et al, 2001; 
– Jamason et al, 1997; 
– Packe and Ayres, 1985; 
– Sartor et al, 1995; 
– Schachter et al, 1981, others.
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Environmental Evidence:
Allergen Levels and Diagnosis Counts
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DC - Asthma visits (ICD-9 493) and Antihistamine Use
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Structure of BBN Model for
Asthma Flare Ups
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Data Flow Diagram

1. Total NCR Asthma and Provider Count

2. Regression

3. Probability Map

4. Unbiased Asthma Flare Ups

1. All NCR county military and 
civilian asthma and provider 
counts are  totaled.

2. Regression algorithm seeks 
‘anomalies’ taking into 
account:

• Day of week
• Holidays
• Data trends

3. Regression output is rescaled 
using a sigmoidal function 
designed to “stretch” out the 
high end of the regression 
output.

4. Output > 0.9 are chosen as flare 
up ‘seeds’ and extended three 
days before and 1 day after to 
generate “truth.”
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Bayesian Network Learning

• Structure Learning
– Determining nodes, edges of graph: what are the effective 

relationships (cond. dependencies) among data types, other 
nodes?  (not automated: only heuristic structure used)

• Parameter Learning 
– Maximum Likelihood Estimation (MLE): compute CPTs that best 

explain data in a “brute force” frequency density sense
• Then ProbMLE(data) = Prob(data | MLE CPTs)

– Maximum A Posteriori (MAP): compute CPTs that best explain 
data given prior CPT estimates, along with weights  

• Then ProbMAP(data) = Prob(data | MAP CPTs)
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Asthma Detector Results

• ROC curve for 2002
• All NCR, military and 

civilian
• Asthma “outbreaks”

– 10 (auto) identified 
– 5 day windows

Fusion of sensor data 
critical to sensitivity
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Scalability

• Inferencing/learning with BBNs is NP-hard
• Heuristics severely constrain problem

– Data is aggregated to increase SNR
– Only select data is used as evidence
– Modularity of structure allows approximations that 

reduce computations
• Mean-field approximations
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Conclusions

• As a classifier, untrained heuristic-only BBN significantly 
outperformed
– BBN against same flare-ups with randomized days of occurrence
– BBN trained with data by MLE from random initial CPTs

• MLE training improved heuristic-only BBN performance 
across range of practical false alarm rates

• Sensitivity analysis using ROC curve analysis can reveal 
contributions of individual data sources; fusion with 
sensor data outperformed syndromic alone

• BBN modeling “works”, but for effective real-world 
performance, development of tools for improving graph 
structure, parameter learning, and prior probabilities is 
needed along with underlying data analysis
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Ongoing efforts

• Application-related
– Obtain & analyze biosensor data for background 

characterization
– Develop cond. prob. tables for inclusion in BBN

• BBN Learning-related
– Evaluate & compare parameter learning approaches
– Test model variations

• Validation-related (with improved datasets)
– Temporal cross-validation: e.g. application of         

2003-based CPTs to 2004
– Spatial cross-validation: e.g. application of NCR-data-

based CPTS to San Diego, other areas
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BACKUPS
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Bayes’ Rule in Surveillance Context

Prior 
ProbabilityPosterior

Probability

Conditional 
Likelihood

Marginal Likelihood
=

*

Example:

Posterior probability = Prob ( anthrax attack | biosensor alert)

Conditional likelihood = Prob ( biosensor alert | anthrax attack )

Prior probability = Prob ( anthrax attack )

Marginal likelihood = Prob ( biosensor alert )



25

Flu Season GI Anomaly Resp Anomaly Sensor Alarm

Example Bayes Network (2)
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